
Generating Procedures and Recovery Sequences:
 A Formal Approach

Michael Heymann

Technion, Israel Institute of Technology, Haifa, Israel
heymann@cs.technion.ac.il

Asaf Degani & Immanuel Barshi

NASA Ames Research Center, Moffett Field, California, USA
{adegani, Ibarshi}@mail.arc.nasa.gov

This paper presents a formal approach for the analysis and development of effective, safe, and efficient procedures
for abnormal and emergency situations. The focus is on methods for describing the behavior of the underlying
machine, specification of desirable and unsafe regions of operation, and an algorithmic approach for computation of
optimal action sequences. We discuss current gaps in procedure development and conclude with some of the
challenges that lie ahead.

INTRODUCTION

A procedure is “a particular course of action or way
of doing something” (Webster, 1989). It is also
defined as “the act of proceeding from a source” and
the “action of proceeding or going on to something”
(Oxford English Dictionary, 1991). As such, any
given procedure begins with some recognition of the
system’s initial (or current) state, details a specified
course of actions, and provides a notion of a desired
end state (Degani and Wiener, 1994). The act of
executing (proceeding with) a procedure implies
dynamics, and, of course, time. Timing issues are a
critical and not-so-well understood aspect of
procedures in general, and emergency procedures in
particular. Timing issues arise in a given procedure at
various levels: (1) in the temporal sense (when it
should be performed), (2) in the sequential sense of
what follows what (Degani, Heymann, & Shafto,
1999), (3) in the interaction between action
sequences and the environment (e.g., “wait 60
seconds for the engine to cool down before
proceeding to the next step”), and (4) in the overall
execution period and the opening and closing of
“windows of opportunity” to accomplish action
sequences (e.g., “we have 15 seconds to accomplish
the procedure before the engine shuts down
automatically”) (see Raby & Wickens, 1994).
Furthermore, when multiple procedures are executed
concurrently, delicate timing and synchronization
among the procedures (such that an action sequence
in one procedure does not block an action in another
procedure, for example) are additional critical, yet
poorly understood, design issues (see Degani, 2004
Chapter 13). Finally, with respect to emergency
procedures, it is important to note here that such
procedures always constitute a “race against time.” It
involves the sudden appearance of a degraded
condition with an imminent path to a catastrophe on

the one hand, and the existence of measured steps to
prevent this catastrophe on the other.

What follows is a general framework for analyzing
procedures in the context of a dynamic and complex
system. We begin with a theoretical discussion of
how to view emergency procedures from a formal
perspective and then introduce a working example to
illustrate the concepts. We then describe four generic
phases in executing a typical emergency procedure,
and introduce an algorithmic approach for computing
the action sequences of a given procedure.

A FORMAL APPROACH FOR PROCEDURE ANALYSIS

Technological models of systems (e.g., engines,
hydraulic systems, life support systems) and their
dynamic behaviors are essential to analysis of
procedures because they provide detailed descriptions
of the system’s behavior and functions. Therefore,
the first step in our approach is system descriptions
and representations that allow the designer to analyze
which action sequences are available to mitigate the
consequences of failures and drive the system to
recovery.

We describe the system’s operating domain as a
finite state set (see Figure 1). At any instant of time,
the system resides in some state or region of the state
set. As the system evolves, it undergoes state changes
called “transitions.” These are normal changes in the
system and represent dynamics, mode changes, and
various configurations that take place. In this context,
we distinguish between two types of transitions:
controlled transitions that are manually triggered by
the user; and dynamic transitions over which the user
has no control. With respect to dynamic transitions,

Figure 1. Regions in the system’s state space

They can be either triggered by the system itself
(timed or automatic transitions), or by the
environment (as it evolves and changes). Sometimes,
events that are triggered by the environment are
considered as disturbances (very high temperature
during engine start).

When a serious malfunction occurs, the system is
thrown out of its normal operating region and an
imminent path to a catastrophe appears. Ideally, we
would like to drive the system back into a safe and
normal operating region, which in Figure 1 is called
target set 1. However, a complete recovery is not
always possible. Therefore, if we cannot drive the
system back to the most desired region (target set 1),
we at least want to drive it to a minimally degraded
region—which may not be the most desirable
solution, but is at least second best, given the
situation. We mark this “second best” region as target
set 2. If we can’t drive the system to target set 2, then
we would try to at least achieve target set 3, and so
on.

Target set 1 is a complete or most desirable recovery;
the rest of the indexed regions represent degraded
performance. We therefore collectively call these
regions, ranging from a low-indexed target set (target
set 2) to a higher-indexed set (target set n), the
degraded region set. In addition to the desirable
(target set 1) and degraded (target sets 2 to n) regions,
there is another region in the state set. This is the
unsafe region. Entrance into this region is considered
to be catastrophic (e.g., engine exploding, loss of
control), and must be prevented at all costs.

Sub-regions and Action Sequences

When and if the system, for whatever reason, gets
thrown outside of its normal region of operation (e.g.,
into state q in Figure 1), we want to determine a
sequence of actions that will drive the system to the
lowest indexed target set possible, without ever
entering the unsafe region. In addition, we may place
other requirements or constraints on the selection of
an action sequence, such as a bounded time of
execution (in most cases, as fast as possible),
preferred paths, the likelihood of cascading failures,
and minimization of impact on related subsystems.

But before we consider the possible action sequences,
we need to identify some additional regions in the
state set that relate to transitions. First, let us identify
and mark the set of states, or region, from which
there exists a sequence of transitions that could lead
the system to the unsafe region. The pink area in
Figure 1 defines this region; from every state within
this region, a sequence of dynamic transitions may
potentially lead the system to a catastrophe. For
example, if, following an engine fire, the users or the
automated system do not take action to stop fuel flow
into the engine, the engine will inevitably transition
towards an unsafe state and may eventually explode.
We denote such a transition a with dash-dot line.

Next, we identify the regions from which the system
can be driven finitely (and controllably) to the
desirable and degraded target sets. Thus, the
controllable region to the desired region (target set 1)
consists of all states from which the system can be
driven (either by the user or an automated system) in
a finite sequence of transitions to target set 1. Along
the same lines, we show concentric areas describing
the controllable regions to target sets 2 and 3.

As can be seen in Figure 1, some of the regions
interact; there are region-inclusions and region-
intersections. State q, for example, where the system
landed following the malfunction, resides in the
intersection of the “uncontrolled region to unsafe”
and the “controlled region to target set 1.” Therefore,
from state q the system can uncontrollably pass into
the unsafe region, while at the same time there exists
another set of transitions that can potentially drive the
system to the desired target set 1 region. The
existence of such an intersection with its two distinct
paths (one going to an unsafe region and the other to
a target set) is what defines an emergency procedure.
(If there is no path to an unsafe region there is no
need for an emergency procedure, and if there is no
path to a target set the situation is already hopeless).
It is important to note here that in most cases these

two distinct paths compete temporally, and the
requirement of an effective and safe procedure is to
minimize the likelihood or risk of unwanted
behaviors and to avoid, at all costs, going to an
unsafe condition.

EXAMPLE: HOT ENGINE DURING START

Three elements must be in place to perform a formal
analysis of a given system and its procedures: (1) a
model of the machine’s behavior; (2) a representation
of the various regions of operations (unsafe and all
target states, controllable and uncontrollable); and (3)
description of the procedure’s specifications (e.g.,
goals and constraints such as time to execution,
preferable paths, minimization of impact on
subsystems, and various engineering and cost
analysis trade-offs). The resulting model, which
incorporates all three elements, can be based on any
one of several existing or emerging modeling
formalisms for discrete-event systems (e.g., Petri
nets, Statecharts, etc.) or hybrid-systems models that
combine discrete-event representation with dynamics
(Heymann & Meyer, 1997; Ramadge & Wonham
1987).

Figure 2 is a simplified discrete-event model of an
engine. The model describes the various states of the
engine and the dynamic transitions among them. The
initial state of the engine is OFF. The user (or an
automatic controller) starts the unit by engaging the
starter; now the engine is cranked and RPM
increases. Once the RPM value has reached a
specified set point, fuel is injected and the engine’s
speed and temperature begin to increase. The engine
can either settle to within the normal operating range,
or over-speed and overheat. Whether the system will
transition to normal operation or to the high-
temperature state is non-deterministic. That is, most
of the time the start will be normal, but every so often
a start will result in an over-speed and high engine
temperature. When and if the engine temperature is
extremely high, the engine can explode.

In the event of a high engine temperature (overheat),
an effective and safe action is to first shut off the fuel
valve. Through this action, it is possible block the
potential transition into the unsafe and catastrophic
region (explosion). Note that at the onset of
“overheat” there exists a path, denoted with a dash-
dot line, that can take the system uncontrollably to an
unsafe region (marked in red). At the same time,
there also exists a path to recovery, as will be
discussed next.

Figure 2. Machine model of a power unit with
operational regions

Say that we were able to turn the fuel switch “off” in
time and avoid explosion. Although no fuel is
injected into the engine, the situation is still dire. If
we sit on our hands and do nothing, the engine
temperature will remain high and eventually the
engine’s internal components will disintegrate.

Since such an outcome is undesirable by any account,
our next step is to improve the situation. This is done
by engaging the “engine control switch” that will
allow the engine’s fans to freely rotate and cool down
the engine. However, the particularities of the
situation, namely the extent to which overheating has
affected the internal components of the engine, can
impede our efforts. For instance, condition C1
represents the requirement for normal oil pressure: If
the oil pressure is normal (true), it is possible to
engage the engine control and rotate the fan, thus
cooling down the engine. If, on the other hand, the oil
lines that supply lubrication to the fan unit have
heated up and ruptured, there will be no oil pressure
(false).

 In the latter case, any rotation of the fans, albeit
reducing the temperature, will destroy entire the fan
unit. We are thus faced with a dilemma—either to
rotate the fans, cool the engine, and destroy the fan
unit, or to let the engine burn up slowly. Based on
engineering cost analysis, we conclude that it’s better
to sacrifice the fan unit (which can be replaced) for
the sake of avoiding engine destruction. In that case,

when we rotate the fans, the system transitions to
degraded target set 3 and there we stop. This is the
best we can do, given the situation at hand.

Proceeding with the analysis, we consider the case
when the oil pressure is normal (condition C1 is
true). Once the engine temperature has dropped, it is
possible to engage the starter and let the engine shaft
rotate and further cool down the engine for a longer
period of time. This, however, can only be done
when the temperature has dropped significantly, and
when the engine is at a low RPM (so as not to grind
the starter). Specifically, if the RPM is at or below
500 RPM (condition C2 is true), and we engage the
starter for more than 60 seconds, it is possible to
achieve full recovery and save the engine. That’s our
most desirable, target 1, goal.

However, if the RPM is well above 500 (condition
C2 is false), continual cooling of the engine cannot
be achieved and permanent damage to the engine will
occur. It is possible to engage the starter when RPM
is somewhat above 500 to continue cooling the
engine, but this will destroy the starter unit. Again,
based on engineering cost analysis we are willing to
sacrifice the starter unit for the sake of cooling the
engine temperature to normal. This is our target set
2—not the best outcome, but definitely a recoverable
one (after replacing the starter) with respect to future
engine operation.

By now we have identified and accounted for all
pertinent regions (unsafe, target, etc.) in the state set.
Likewise, we identified all the transitions among the
states and noted their consequences. With such
categorizations of both states and transitions, it
became clearer what possible paths are available for
recovery; what to avoid and what to seek. The
analysis helps in producing and evaluating the set of
action sequences that will eventually appear in the
procedure.

One of the benefits of using such a model-based
approach is that the shared knowledge of all people
and disciplines involved can be represented in the
model. Currently, in every high-risk industry
(medicine, nuclear power, aerospace, etc.),
procedures are designed in an ad-hoc fashion. The
state of the art in procedure design involves calling
upon the expertise of engineers, users, and human
factors professionals to review the proposed
sequences of actions. Yet no shared model is used to
support the design group in the analysis, design, and
review process. Based on our observations and field
studies of procedure development processes, we
believe that the use of even a simplified and/or

incomplete formal model can go a long way toward
improving the design process and the overall
effectiveness of the resulting procedure.

STRUCTURE AND OUTLINE OF AN ALGORITHMIC
APPROACH FOR PROCEDURE SYNTHESIS

In the following section we move from models and
concepts that can support analysis to algorithmic
approaches generating procedures. Our motivation
stems from the observation that with increased use of
automatic control (e.g., in aircraft subsystems) and
the high complexity of modern systems, the ability of
engineers and procedure developers to visualize,
inspect, and evaluate the correctness of procedures is
reduced, as there may be thousands of possible
permutations and possible action sequences. Our
intent is to develop methods and tools that can
support the procedure design process by generating a
set of candidate sequences. Eventually such methods
can be incorporated into online systems that will
generate an effective and safe action sequence for any
anticipated condition, and perhaps for even
unforeseen situations.

In the introduction of this paper we defined a
procedure as having an initial state, a specified course
of actions, and a desired end state. In this section, we
will expand on that definition and discuss four main
phases in the execution of abnormal and emergency
procedures, then touch on several important design
considerations. This will lead us into the last part of
our paper, where we present an algorithmic approach
for generating effective procedures in the context of a
dynamic system.

Phases of Procedure Execution

Few emergency situations present unambiguous cues
or indications such that the user (or the automated
system) can immediately initiate the necessary
sequence of actions. In most other cases, the current
state of the system can only be determined by some
form of diagnosis (e.g., is the fire in air ducts or in
the pneumatic system itself?). Often this diagnosis
requires that the user or the automation take certain
actions on the system itself to determine its actual
state. In the case of smoke in the cabin, it may be
possible to send a flight attendant to visually inspect
the cabin and determine the type of smoke and its
source. However, it may require several manifold
reconfigurations to isolate a leak in an hydraulic
system. The point is that in many cases it is necessary
to first diagnose and determine the current state of the
system. This, in turn, determines which action
sequence is to be followed. Therefore, the first phase

of an emergency procedure is defined here as
determination of the current state of the system.

Phase 2 in the execution of an emergency procedure
is the blocking of possible transgressions into
catastrophic states. Here our goal is to immediately
and effectively block any dynamic transition (e.g.,
temperature rise, fire) that can drive the system into
an unsafe and potentially catastrophic region (e.g.,
explosion). In this phase, which is time critical,
actions are drastic and have serious consequences. In
the engine example described earlier, the imperative
blocking action is shutting off the fuel valve to the
engine to immediately stop the injection of fuel to the
hot engine (and avoid transition to an unsafe state). In
many systems, such drastic actions also carry the
burden of being irreversible. For example, in many
aircraft, once an electrical power unit is disengaged
from an engine, it cannot be re-engaged in flight.

Phase 3 focuses on preliminary stabilization of the
failed system. Here, while the system is blocked from
accelerating toward catastrophe, it is still not
functional and may be unstable. To deal with this
situation, we begin measured steps to first stabilize
the system. In the engine example, the preliminary
stabilization is the action of engaging the engine
control to keep the fans rotating and allow immediate
venting and cooling of the engine.

Once the system is stabilized and the level of urgency
wanes, it is possible to begin Phase 4—optimized
steps toward recovery. Here we may have time to
consider options and try to find a path that will yield
the most desirable (lowest-index) recovery. And
while we wish for a full recovery, sometimes we
must accept the fact that full recovery cannot be
guaranteed. In these situations, we accept a degraded
recovery and proceed to it judiciously.

Recognizing the occurrence of unpredictable
environmental or dynamic-internal events, especially
when only partial information about the underlying
system is available, is critical for analysis and design
of sequences that take place in phases 3 and 4. Many
unexpected events can disrupt the sequence of
recovery actions. For example, another system can
fail and block our ability to take measured steps
towards the intended target state. Even worse,
another path to catastrophe can open up and force us
to defer or abandon the procedure. Thus, all abnormal
and emergency procedures fall into the category of
being contingency driven, where, in principle, each
step must be evaluated given the overall situation
(and also the probability of additional failures that
may disrupt the sequence).

Finally, procedures are rarely conducted in isolation.
They usually interact with other procedures that are
going on at the same time or will have to be executed
later on. Depending on the nature of that interaction,
what may appear in the context of the failed
subsystem to be the most desirable target state may
not be so in the context of the larger system.
Consider, for example, a situation where driving a
failed system to target state 1 would result in a
certain unit being irreversibly disengaged and shut
down, yet that specific unit is critical for some future
and unavoidable operation (e.g., for landing). In this
situation, it may be prudent to drive the failed system
to partial recovery (e.g., target state 2) and keep the
critical unit online.

In commercial aircraft operation, some of these
considerations are listed within the procedure steps so
the pilot will be alerted to the consequences of his or
her actions. The point here is that an emergency
procedure should not only be viewed in a local
context, but also in the global. In some situations it
will be necessary to forfeit local recovery in order to
maintain the overall health of the system.

Synthesis of Procedures

In this section we outline the basic algorithmic steps
in a typical application of the proposed methodology
for synthesis of an effective, efficient, and safe
procedure. The computation of the procedure
sequence takes into account an important distinction
we have made earlier between controlled transitions
that are triggered by the user and dynamic transitions
over which the user has no control. The are five main
steps in the way we compute the action sequences for
a procedure:

Step 1. Computation of the region of uncontrollable
to unsafe. This is the set of states from which there
exist sequences of dynamic transitions that may lead
the system to unsafe states. To accomplish this
computation, we consider the machine model in
which all controllable transitions have been
(temporarily) deleted and only the dynamic
transitions remain. We then reverse the directions of
the dynamic transitions (each source state of a
transition is interchanged with its destination), and
compute the set of reachable states from the set of
unsafe states. The resultant set of states is the region
of uncontrollable to unsafe.

Step 2. Computation of the controllable region to
target j, j=1, 2, 3, n. The algorithm used here is based
on previous work by Brave & Heymann (1990) on
stabilization. The essence of the algorithm consists of

finding the maximal region in the state set that (1)
has no dynamic transition sequences that might loop
indefinitely without ever reaching the target state,
thus rendering the procedure ineffective, and (2)
which from each state can reach the target set in a
finite and bounded number of transitions.

The algorithm proceeds iteratively, starting from the
target set outwards. At the start (0th iteration), the
candidate set consists of the target set itself. At
iteration i, the algorithm creates the ith candidate set
by adding to the (i-1)th set all states which have at
least one emanating controlled transition that enters
the (i-1)th candidate set and all their emanating
dynamic transitions enter the (i-1)th candidate set, as
well. The algorithm terminates at the iteration for
which no new states with the mentioned properties
can be found. The last candidate set is the sought-
after controllable region to the target set.

Step 3. Transition and state cost assignment. Once
the state set has been classified as described above,
we assign costs to the various states so as to express
the undesirability of reaching these states. Thus, we
assign a higher cost to a state in a higher-indexed
target set than to a state in a lower-indexed target set.
Likewise, we assign high cost to states in the
controllable region to the high-indexed target states
and low cost to states in the controllable region to
low-indexed target states. Next, we assign different
costs to the transitions based on operational
considerations (e.g., irreversibility of actions will get
a high cost, while availability of components such as
fire suppression bottles that help in the recovery will
get a low cost). Along the same lines, states that
require complicated and time-consuming diagnosis
receive higher costs than states that do not. Finally,
we assign very high cost to states in the region of
uncontrollable to unsafe, and the highest cost to states
in the unsafe region.

Step 4. Probability assignment to dynamic
transitions. Dynamic transitions emanating from a
given state may depend on the given state, time of
entry into the state, time of residence in the state, and
various other case-dependent considerations.
Likewise, it is possible to obtain historical data about
the probability of a given dynamic transition (e.g., 20
percent of the time after the system fails, it also
burns). These probabilities are expressed
quantitatively and assigned to all relevant transitions.

Step 5. Optimal procedure synthesis. The optimal
procedure is synthesized so as to minimize the cost of
blocking, stabilization, and recovery. To understand
how this is accomplished, note that each recovery

execution may include, along with its designated
probabilities, dynamic transitions. Therefore, its
sequences may terminate at more than one possible
end state. We initially assign to each possible
recovery sequence a cost that is equal to that of its
end state. A sequence that enters an unsafe state is
not permitted to continue beyond that state, and
hence is assigned the cost of the unsafe state. Other
sequences are permitted to continue to the lowest
achievable end state (with correspondingly lower cost
assignments).

All executions of minimal cost (in case there are
more than one) are then chosen as candidates for
selection as the optimal action sequences. The final
selection can either be made manually by the user,
or it can be computed by minimizing transition costs
(e.g., weighted with respect to probabilities of
occurrence of dynamic transitions).

CONCLUSION AND FUTURE DIRECTIONS

In this paper we suggest a formal approach to the
problem of developing emergency and abnormal
procedures. The approach proposed here aims to
enhance the current practice of procedures
development by augmenting it with a formal
methodology.

Designing effective, efficient, and safe procedures for
abnormal and emergency situations is a complex
process that has not been systematically addressed.
Current practices are well intended, but insufficient
to meet the challenges of future systems. The
framework presented here is a first step towards
meeting such challenges.

In this context, many problems arise that require
further research: For example, current procedures
often assume a single failure. When there is more
than one failure, it is left to the users to prioritize
their actions and interleave all the emergency
procedures into a single sequence strand (while, for
example, making sure that actions on one procedure
does not block another). Under extreme time pressure
and stress, users performing such prioritization and
interleaving may take actions that are potentially
unsafe. Currently, there is very understanding of such
interleaved procedures, let alone guidelines to
support users in this difficult task.

Another topic that requires further research concerns
the design of annunciations and indications of
systems state to aid users and automated systems in
determining the current state of the failed system and
initiating the appropriate procedure. This involves

criteria for instillation of sensors and various aspects
of diagnosis processes, partial observations, and
information abstraction (Heymann & Degani, 2007).
Generally speaking, we lack formal definitions of the
class of problematic situations (e.g., incorrect
sequences, timing problems, deadlocks, blocking)
that render a procedure ineffective. This set of
properties is critical for analysis, as it is the input for
any methods for formal verification of procedures.
Likewise, formal and heuristic criteria addressing
basic human-machine interaction problems that make
a procedure prone to human error are still missing.
Finally, any analysis, generation, and verification
process must be extended beyond technical and basic
human-machine interaction issue to include users’
cognitive and perceptual limitations, crew
coordination (e.g., two pilots coordinating the
execution of one or more emergency procedures),
and crew-automation coordination (in the case of an
online system for dealing with emergencies).

ACKNOWLEDGMENTS

The work described in this paper was funded by
NASA’s basic research and technology effort on
human-automation interaction as well as the
Integrated Intelligent Flight Deck project,
Aeronautics Research Mission Directorate. The first
author was supported by Grant NCC 2-798 from the
NASAAmes Research Center to the San Jose State
University. Michael Shafto and Kevin Jordan
provided support and encouragement for this research
work.

REFERENCES

Brave, Y. & Heymann, M. (1990). On Stabilization
of Discrete Event Processes. International
Journal on Control, 51, pp.1101-1117.

Degani, A. (2004). Taming HAL: Designing
interfaces beyond 2001. New York: Palgrave-
MacMillan.

Degani, A., Heymann, M., & Shafto, M. (1999).
Formal aspects of procedures: The problem of
sequential correctness. Proceedings of the 43rd
Annual Meeting of the Human Factors and
Ergonomics Society. Houston, TX: Human
Factors Society.

Degani, A., and Wiener, E. L. (1994). On the design
of flight-deck procedures. NASA Technical
Memorandum #177642. Moffett Field, CA:
NASA Ames Research Center.

Heymann, M., & Degani, A. (2007). Formal analysis
and automatic generation of user interfaces:
Approach, methodology, and an algorithm.
Human Factors. 49.

Heymann, M. Lin, F. & Meyer, G. (1997). Synthesis
of Minimally Restrictive Legal Controllers for a
Class of Hybrid Systems in Hybrid Systems. In P.
Antsaklis, W. Kohn, A. Nerode and S. Sastri,
Eds., LNCS 1273, pp. 134-159, Springer Verlag.

Raby, M., & Wickens, C. D. (1994). Strategic
workload management and decision bias in
aviation. International Journal of Aviation
Psychology, 4, pp.211-240.

Ramadge, R. J. and Wonham, W. M. (1987).
Supervisory control of a class of discrete event.
processes. SIAM J. Control and Optimization,
25(1), pp. 206-230.

